久久久91-久久久91精品国产一区二区-久久久91精品国产一区二区三区-久久久999国产精品-久久久999久久久精品

最新廣告
關(guān)注中國自動(dòng)化產(chǎn)業(yè)發(fā)展的先行者!
工業(yè)智能邊緣計(jì)算2025年會(huì)
CAIAC 2025
2025工業(yè)安全大會(huì)
OICT公益講堂
當(dāng)前位置:首頁 >> 案例 >> 案例首頁

案例頻道

線性廣義時(shí)滯系統(tǒng)的狀態(tài)反饋H∞控制
  • 企業(yè):控制網(wǎng)     領(lǐng)域:人機(jī)界面     行業(yè):建筑樓宇    
  • 點(diǎn)擊數(shù):1382     發(fā)布時(shí)間:2007-11-18 11:34:03
  • 分享到:



    廖勇(1982—)
男,江西撫州人,碩士研究生,主要研究方向?yàn)閺V義系統(tǒng)的魯棒控制。

摘要:首先利用線性矩陣不等式(LMI)方法,給出線性廣義時(shí)滯系統(tǒng)穩(wěn)定的一個(gè)充分條件;然后討論廣義時(shí)滯系統(tǒng)的H狀態(tài)反饋控制,給出控制器存在的充分條件,同時(shí)給出控制器的設(shè)計(jì),控制器可由矩陣不等式解得。

關(guān)鍵詞:廣義時(shí)滯系統(tǒng);線性矩陣不等式;H控制

Abstract: Using the method of linear matrix inequality (LMI),H state feedback control problem for linear singular systems with time-delay in state is discussed. A sufficient condition which guarantees the asymptotical stability of the closed-loop system is given. Furthermore, one sufficient condition for the existence of an H∞ state feedback controller is shown. The controller can be obtained via solving matrix inequality.

Key words:Singular time-delay system; LMI; H control

    為適應(yīng)近代科學(xué)技術(shù)的發(fā)展以及大型工程技術(shù)的需要,人們提出了非傳統(tǒng)數(shù)學(xué)模型描述的廣義系統(tǒng)。信息傳遞等因素致使系統(tǒng)普遍存在滯后現(xiàn)象[1,2],因而人們又提出滯后廣義系統(tǒng)[3,4]。滯后廣義系統(tǒng)的結(jié)構(gòu)相當(dāng)復(fù)雜[4],既不同于無滯后的廣義系統(tǒng),又不同于通常的滯后系統(tǒng)。

    H控制理論是魯棒理論的一個(gè)重要分支,近年來隨著無滯后線性系統(tǒng)H理論的日趨成熟和完善,滯后線性系統(tǒng)的H∞理論也得到了相應(yīng)的發(fā)展[5,6]。但由于廣義滯后系統(tǒng)結(jié)構(gòu)的復(fù)雜性,致使對(duì)滯后廣義系統(tǒng)的H∞控制問題的研究仍處于初級(jí)階段[4]。本文利用線性矩陣不等式方法,討論一般的廣義時(shí)滯系統(tǒng)H∞控制問題,給出了問題可解的一個(gè)充分條件以及控制器設(shè)計(jì)。

1 問題描述與預(yù)備知識(shí)

    考慮如下線性廣義時(shí)滯系統(tǒng)
               
                (1)

    其中:為系統(tǒng)的狀態(tài)變量,為控制輸入,為干擾輸入,為控制輸出,為滯后常數(shù),為任一連續(xù)的滿足相容性條件的初始函數(shù),各系數(shù)矩陣為適維常陣。特別地,。不失一般性,假設(shè),Bl和Dl都為零矩陣,否則可通過狀態(tài)擴(kuò)維方式將系統(tǒng)(1)轉(zhuǎn)化為

   

    本文的目的是設(shè)計(jì)無記憶的狀態(tài)反饋

                  (2)

    其中為常陣,使得系統(tǒng)(1)與反饋控制器(2)構(gòu)成的閉環(huán)系統(tǒng)
    
             (3)
             
    滿足如下條件:1)內(nèi)穩(wěn)定;2),其中:表示從干擾輸入W(t)到被控輸出Z(t)的傳遞函數(shù),為給定常數(shù)。

    設(shè)有滯后廣義系統(tǒng)
   
                       (4)

    其中:為n×n奇異常數(shù)矩陣,

且連續(xù),

    方程(4)的初始條件為

          (5)

    在給出穩(wěn)定性概念之前,還需引用如下記號(hào):

    1) 區(qū)間Tk=[0,tk),其中

    2) m維連續(xù)可微向量函數(shù)q(t,x)在上有定義;

    3) sk(t0,tk)為使得方程(4)至少在[t0,tk)上有連續(xù)解的所有相容初始函數(shù)的全體;

    4)

    定義1[7]若,總存在,使得,方程(4)通過初始條件的解滿足,則方程(4)的零解關(guān)于穩(wěn)定。

    特別地,若僅與有關(guān),而與t0無關(guān),則方程(4)的零解關(guān)于{q(t,x),Tk}一致穩(wěn)定。

    定義2[7]若方程(4)的零解關(guān)于是穩(wěn)定的,且,有則稱方程(4)的零解關(guān)于漸近穩(wěn)定。

    引理1[8]給定矩陣 ,若,且, 則可 行 當(dāng) 且 僅 當(dāng),  若(6)可 行,   記則(6)的所有可行解為其中,滿足,,其中,,的一個(gè)滿秩分解。

    引理2[9]若存在矩陣和正定陣滿足
    
        (7)

    則系統(tǒng)(3)零解漸近穩(wěn)定。

    引理 3[9] 若存在矩陣和正定陣滿足
    
                           (8)

   
則閉環(huán)系統(tǒng)(3)內(nèi)穩(wěn)定且

    引理4[9]若存在矩陣,和正定矩陣滿足如下LMI不等式
       (9)

    其中,則系統(tǒng)(1)的H控制問題有解,即系統(tǒng)(3)內(nèi)穩(wěn)定,且滿足H范數(shù)界。此時(shí)控制器,其中

2 主要結(jié)果

    定理1  若存在矩陣和正定陣滿足

   

   
則系統(tǒng)(3)零解漸近穩(wěn)定。

    其中,

    證明 引理2中(7)的第二個(gè)不等式等價(jià)于下式

   

    則將引理1的結(jié)果應(yīng)用于引理2即可得定理1。

    下面給出系統(tǒng)(3)內(nèi)穩(wěn)定且滿足H范數(shù)界,即的一個(gè)充分條件。

    定理2  若存在矩陣和正定陣滿足

    

    則閉環(huán)系統(tǒng)(3)內(nèi)穩(wěn)定且

    其中,,而且所有的矩陣P滿足以下兩式:
              (10)

      (11)

    其中,滿足, ,其中,,的一個(gè)滿秩分解。

    證明  ,因?yàn)檎ǎ?IMG style="border:1px solid #000" src="/uploads/images/cases/2007/11/1201584008.jpg" align=middle >,則。將引理1中的結(jié)果應(yīng)用到引理3即可證明定理2(證明略)。

    定理3 若存在矩陣,和正定矩陣滿足如下矩陣不等式

                       (12) 

    其中,,則系統(tǒng)(1)的H∞控制問題有解,即系統(tǒng)(3)內(nèi)穩(wěn)定,且滿足H范數(shù)界。 

    證明   使用兩次Schur補(bǔ)引理可將(8)式簡化成下列不等式

    (Q+CTC)+(A+BK)+(A+BK)T+<0

    將引理1的結(jié)果應(yīng)用到引理4即可得定理3。

參考文獻(xiàn):

    [1]Hale J K. Theory of Functional Differential Equations[M].New York:Springer Verlag,1977.

    [2]劉永清,唐功友.大型動(dòng)力系統(tǒng)的理論與應(yīng)用——卷三:滯后、穩(wěn)定與控制[M].廣州:華南理工大學(xué)出版社,1992.

    [3]Campbell S L. Singular Systems of Differential Equation[M].San Francisco:
Pitman,1980.

    [4]劉永清,謝湘生.大型動(dòng)力系統(tǒng)的理論與應(yīng)用——卷八:滯后廣義系統(tǒng)的穩(wěn)定,鎮(zhèn)定與控制[M].廣州:華南理工大學(xué)出版社,1998.

    [5]Wen T, Yaling C. H∞-optimal control for descriptor systems[A]. Proc of 12th IFAC World Congress[C].Sydney,1993.2:201-204.

    [6]Masubuchi I,Kamitane Y,Ohara A,et al. H∞ control for descriptor systems:A matrix inequalities approach[J].Automatica,1997,33(1):669-673.

    [7]劉永清,王偉,李遠(yuǎn)清.大型動(dòng)力系統(tǒng)的理論與應(yīng)用——卷七:滯后廣義系統(tǒng)解的基本理論與應(yīng)用[M].廣州:華南理工大學(xué)出版社,1997.

    [8]曾建平,張怡,車玲.一類線性矩陣不等式可行解集的構(gòu)造.Proceedings of the 24th Chinese Control Conference[C].Guangzhou,P.R.China,2005.7:538-540.

    [9]馮俊娥,程兆林.線性廣義時(shí)滯系統(tǒng)的H∞狀態(tài)反饋控制器[J].控制與決策,2003,18(2):159-163.

    (廈門大學(xué)自動(dòng)化系,福建  廈門  361005)  廖   勇,曾建平

熱點(diǎn)新聞

推薦產(chǎn)品

x
  • 在線反饋
1.我有以下需求:



2.詳細(xì)的需求:
姓名:
單位:
電話:
郵件:
主站蜘蛛池模板: 最新更新国内自拍视频| 国产成人资源| 国产精品日韩欧美在线第3页 | 国产伦一区二区三区免费| 57pao国产成视频一永久免费| 久久精品综合| 日本一线一区二区三区免费视频| 91桃子| 久热中文字幕在线精品首页| 亚洲欧美在线制服丝袜国产| 免费国产一区二区三区| 国产亚洲视频在线观看| 性感美女香蕉视频| 激情网址在线观看| 国产福利不卡| 精品免费在线视频| 麻豆精品在线观看| 日日干日日操| 亚洲成人手机在线| 亚洲视频欧洲视频| 8x永久免费观看成人影院| 大陆一级毛片| 尤物视频网站在线| 中国欧美一级毛片免费| 亚洲精品色一区色二区色三区| 免费的黄色毛片| 欧美视频在线观看一区二区| 国产在线观看第一页| 国产精品久久久久影院色老大| 爱涩涩| 黄色三级欧美| 黄色片免费网站| 黑人干日本人| 婷婷中文在线| 精品在线视频免费| 寡妇一级a毛片免费播放| 国产超级乱淫片中文| 国产成人免费午夜性视频| 国产亚洲精品福利| 国产欧美在线观看精品一区二区| 嘿咻18视频在线看|