(中船重工第七一○研究所,湖北 宜昌 443003)苗建明
苗建明(1979-)男,山西長治人,畢業(yè)于太原理工大學,碩士,從事海洋設備研究及海洋物探設備開發(fā)工作。
摘要:本文首先對自行研制的海上地震拖纜自動定深器建立了較為詳細的數(shù)學模型,給出了其傳遞函數(shù)模型,然后在Matlab環(huán)境下,利用仿真工具Simulink和控制系統(tǒng)工具箱(Control System Toolbox)中的SISO工具設計了經(jīng)典控制器,并且對該系統(tǒng)進行了仿真分析,仿真結(jié)果表明:利用本文所設計的控制器,該系統(tǒng)具有較好的動態(tài)特性。
關鍵詞:拖纜;深度;控制;建模;仿真
Abstract: A kind of math model of auto-depth dragging cable controller on offshore seismic is proposed in this paper. The transfer function of dragging cable controller is first established, and then the typical controller is obtained by using Simulink and SISO tool in the Control System Toolbox in Matlab.Finally, the control system is simulated and analyzed. The results indicate that the designed controller has good dynamic characteristics.
Key words: Dragging cable; depth control; modeling simulation
1 概述
海上地震拖纜深度控制系統(tǒng)是海上地震石油勘探系統(tǒng)中的重要設備之一,主要用于控制數(shù)根長達十多公里的拖纜在海上地震石油勘探過程中保持在設定的深度和位置穩(wěn)定運行。 其主要通過對海上地震拖纜多個節(jié)點處安裝自動定深器來實現(xiàn)深度控制,其每個節(jié)點通過壓力傳感器實時測得該段電纜深度,然后通過微處理器對其進行實時調(diào)節(jié),達到深度自動閉環(huán)控制的目的,本文在對自行研制的定深器系統(tǒng)建立較為詳細的數(shù)學模型的基礎上,設計了一經(jīng)典控制器,并且對其進行仿真研究。
2 電纜深度控制系統(tǒng)數(shù)學模型的建立
海上地震拖纜深度控制系統(tǒng)主要通過直流伺服電機、減速器驅(qū)動絲杠螺母機構(gòu),帶動搖桿機構(gòu)進行翼板攻角的調(diào)節(jié),進而實現(xiàn)深度控制的目的,其工作原理如圖1所示。下面建立其各組成部分詳細的數(shù)學模型。
圖1 海上地震拖纜深度控制系統(tǒng)工作原理圖
2.1 直流電機的數(shù)學模型
直流電機是動態(tài)系統(tǒng)中經(jīng)常用到的設備,通常通過控制電樞電壓Va來控制電機角速度ω(t), 其傳遞函數(shù)模型如式1所示,其中:Va為輸入電壓,L和R分別為電樞的自感和電路的等效電阻,T(t)和ω(t)為電機的輸出轉(zhuǎn)矩和輸出角速度,Vemf為轉(zhuǎn)子繞組的反饋電動勢,kf×ω(t)為系統(tǒng)的粘性阻尼,其中,Km為力矩常數(shù),主要取決于電機的物理結(jié)構(gòu);TL為負載力矩。
(1)
2.2 被控對象數(shù)學模型的建立
這里被控對象是減速器、傳動機構(gòu)(絲杠、螺母)、翼板及整個定深器的深度調(diào)節(jié)的通稱。下面逐個建立其數(shù)學模型:設減速器減速比為i,絲杠螺母的螺距為n(mm),螺母的運動行程為y1(mm),則有以下方程:
(2)
搖桿的長度為lmm,翼板的攻角為α°,則有以下方程:
(3)
設升力為Lkg,翼板的升力系數(shù)為CL,ρ為海水密度,v為拖曳速度,b為翼板的展旋比,A為翼板面積,c為翼板平均弦長,CDC為翼板的橫流阻力系數(shù)(可查表求得),Λ為翼板的后掠角,可以得到下面的方程:
(4)
(5)
(6)
(7)
將(12)、(13)、(14)式帶入式(11)中得到:
(8)
其中:
設定深器及電纜的等效負浮力為G(kg),定深器的深度為h(t)(m),定深器及電纜的等效質(zhì)量為m,阻尼系數(shù)為c,則有:
(9)
聯(lián)立(9)、(10)、(15)、(16)式,則可得到被控對象完整的數(shù)學模型。
對(9)式求Laplace變換,并且假設初始條件為零,可以得到減速器和傳動機構(gòu)的傳遞函數(shù)模型為:
(10)
可以看出,減速器和執(zhí)行機構(gòu)的傳遞函數(shù)模型為一典型的積分環(huán)節(jié)。
由于翼板為非線性環(huán)節(jié),為求其傳遞函數(shù),需首先將其線性化:
將式(10)在α=0°處線性化,可得
(11)
式(15)中,由于,將略去,可得翼板的線性化模型:
(12)
對式(18)、(19)求Laplace變換,得翼板的傳遞函數(shù)為:
(13)
對式(16)求Laplace變換,得:
(14)
因此,整個被控對象的傳遞函數(shù)模型為:
(15)
3 控制系統(tǒng)設計及仿真分析
3.1 直流電機調(diào)速系統(tǒng)設計
由于在定深器工作時由于航速的不穩(wěn)定,或者有海流的影響等,可能出現(xiàn)瞬時的負載突變,因此應該設計電機調(diào)速系統(tǒng),即通過對系統(tǒng)輸入一定的電壓,使電機帶動負載以期望的角速度運動,并要求有一定的穩(wěn)定裕度。本文設計的直流電機調(diào)速系統(tǒng)模型如圖2所示,利用Control System Box中的單輸入單輸出工具來設計補償器模型,結(jié)果為C(s)=50/t,圖3為給系統(tǒng)在1s到2s之間加一個負載擾動TL后系統(tǒng)的階躍響應仿真結(jié)果。從圖中可以看出,本調(diào)速系統(tǒng)明顯的提高了系統(tǒng)抗負載干擾能力。
圖3 電機在設計補償器作用下的階躍響應曲線
3.2 電纜深度控制系統(tǒng)校正環(huán)節(jié)的設計及仿真分析
前面設計了電機的調(diào)速系統(tǒng)和建立了被控對象的數(shù)學模型,將各參數(shù)帶入其中,可得到階躍響應曲線如圖4所示,結(jié)果顯示為不穩(wěn)定系統(tǒng),因此必須設計校正環(huán)節(jié)以使系統(tǒng)穩(wěn)定。
圖4 被控對象階躍響應曲線
由于該系統(tǒng)為相位滯后的不穩(wěn)定系統(tǒng),因此考慮設計比例-微分超前控制器,在Matlab的SISO系統(tǒng)設計工具中設計系統(tǒng)的補償器C(s),設計結(jié)果為,其根軌跡及系統(tǒng)開環(huán)波德圖如圖5所示,結(jié)果表明,通過加入兩個微分超前校正環(huán)節(jié)和一個比例環(huán)節(jié)后,本系統(tǒng)變?yōu)榉€(wěn)定系統(tǒng),其幅值裕量為23.1dB,相位裕量為63.7°。
圖5 系統(tǒng)根軌跡圖及開環(huán)波德圖
把電機調(diào)速系統(tǒng)模型、被控對象模型及設計的比例微分控制器模型轉(zhuǎn)化為atlab/Simulink環(huán)境下的仿真模型如圖6所示,整個系統(tǒng)的階躍響應曲線如圖7所示。從圖中可以看出,系統(tǒng)的上升時間為0.2s、峰值時間為0.65s、調(diào)節(jié)時間為2.45s、最大超調(diào)量為10%。
圖6 系統(tǒng)Simulink模型框圖
圖7 系統(tǒng)階躍響應曲線
4 結(jié)語
本文在首先建立海上地震拖纜自動定深器數(shù)學模型的基礎上,設計了系統(tǒng)的經(jīng)典控制器,并且進行了仿真分析,結(jié)果表明,本文設計的控制器可以為實際系統(tǒng)的實現(xiàn)提供了一定的參考依據(jù)。
參考文獻:
[1] 吳家鳴,葉家瑋,李寧. 拖曳式多參數(shù)剖面測量系統(tǒng)水動力與控制性能研究述評[J]. 海洋工程 2004,22(1):111-120.
[2] 鄧德衡,黃國樑,樓連根. 拖曳線列陣陣形與姿態(tài)數(shù)值計算[J]. 海洋工程,1999,17(1):17-26.
[3]李志印,吳家鳴. 水下拖曳系統(tǒng)水動力特性的計算流體力學分析[J]. 中國造船,2007,48(2):9-18.
[4] 王飛. 海洋勘探拖曳系統(tǒng)運動仿真及控制技術研究 [D] . 上海:上海交通大學,2007.
[5] 張攀. 拖曳系統(tǒng)運動仿真計算 [D]. 武漢:武漢理工大學,2005.
摘自《自動化博覽》2010年第六期